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ABSTRACT 
 

This dissertation addresses the design, simulation, prototype, and test of a new 

energy generation system, which transforms rotational motion into electricity by the use 

of an innovative turbine-generator. The system is divided in two assembled subsystems 

that interact to finally transform kinetic energy into electricity.  The first subsystem is a 

miniaturized notched impulse turbine system, and the second one is a millimeter 

permanent magnet generator (PMG) assembled into the turbine. 

The conversion of biomechanical energy to electric energy, using clean and free 

energy produced by a living organism, is being increasingly researched [1]–[11]. These 

are all viable options, but advantages and disadvantages of each type of energy 

conversions should be evaluated individually to determine key factors such as efficiency 

as an energy harvesting method, the implementation cost, size, and the final 

applications where they will be used. 

Through this dissertation, a new option of green energy conversion is made 

available; focusing on the use of turbines to extract energy from microfluidics, with 

diverse application in biomedical, military/aerospace, and home areas. These systems 

have the potential of converting mechanical movement energy, and hydraulic energy 

into electric energy that may be sufficient for self-powering nano/micro devices and 

nano/micro systems. A flow, with constant pressure, a magnetic generator, and a novel 

impulse turbine design are combined to form a self-contained miniaturized generator 

system. The turbine consists of two main parts: a bearingless rotor and the enclosure or 



www.manaraa.com

viii 
 

casing; while the miniaturized magnetic generator is a permanent magnet brushless 

machine, consisting of permanent magnets in a ring configuration and radial coils. A 

permanent pressure, from microfluidic pressure system, is the force used to move the 

blades. This rotational motion of the turbine is transformed into electricity using 

magnetic induction, formed by permanent magnets on the rotor and nine coils fixed in 

the holder of the turbine. The electricity is generated when the magnetic field rotates 

and moves past the conductor, which induces a current according to Faraday‘s Law [1–

3]. The system has potential uses not only in medical equipment, but in automotive 

applications, home appliances, and aquatic and ventilation systems. 
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CHAPTER 1:  INTRODUCTION 
 

1.1 Overview 

The research work presented in this dissertation states the design, mathematical 

model, simulations, and tests of a new energy system, which is a miniaturized system 

that transforms rotational motion into electricity by the use of innovative subsystems that 

interact to finally transform kinetic energy to electricity. The dissertation work 

incorporates a new turbine model, which includes notched blades, and a special turbine 

casing, designed to work in immersed micro flow fluid systems. In addition, an 

electromagnetic system is attached inside of the turbine, to finally convert the variable 

magnetic field to electricity, which is produced from permanent magnets (attached on a 

rotor) that rotate and induce currents into coils that are fixed inside the turbine casing. 

The final design could be used to create new systems, replace old, inefficient and toxic 

devices or could be adapted to biomedical and vehicular applications, and to military 

and aerospace systems. In addition, with small design modifications and utilization of 

biocompatible materials, this notched blade energy generation system can be used for 

in vivo and many other applications. 

1.2 Dissertation Organization 

This dissertation in energy generation uses a battery-free system capable of 

operating in bio/medical, environmental, aquatic/marine, and many other  micro-fluidic 

applications is organized into five chapters, with the first and fifth corresponding to 
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introduction and conclusions respectively. Chapters two through four describe the 

primary contributions of the work developed in this dissertation.  

Chapter 2 provides the theoretical background to support the design of the 

notched blade energy generation system. This chapter summarizes the hydrodynamics 

laws applied in turbine designs, electromagnetic theories which explain the interactions 

of magnetic field and coils to produce electricity, and concludes with a description of 

permanent magnet machines used as generators or motors.  

Chapter 3 presents the final computer aided-designs (CAD), detailing the 

geometries of the designs of the notched blade turbine and the magnetic generator 

system. Chapter 3 also shows the step-by-step development of a new mathematical 

model created to explain the physical behavior of the complete system.  

Chapter 4 presents the simulations, assembly, tests, and the analysis of results 

of three different prototypes. This chapter describes how the scaled prototypes were 

assembled and tested, and explaining the differences and updates of each, until the 

best model is found. 

1.3 Contributions 

This dissertation is an original work, which has led to the discovery of a 

miniaturized system capable of producing electrical energy by the use of a novel cross-

flow turbine. Unlike the impulse turbines, such as Pelton wheel [15]–[19], the core of the 

system is a miniaturized cross-flow turbine [16], [20], [21] which is a hybrid system that 

combines action and reaction turbine characteristics and takes the benefits of an initial 

impulse jet (jet stream of fluid) and the internal pressure to move the totally immersed 

notched blade rotor. The assumption of immersion, which is crucial to the design, 
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derives from the need to allow future compatibility with closed micro fluidics systems, 

such as the circulatory system, for which a Pelton design would not be appropriate 

given their requirement of air in the rotor chamber [15], [18], [19]. Despite similarities in 

the way the impulse applied to the blades, there are significant differences that make 

the design of this system a unique development. The notched blade turbine can use 

one or two motor-generators assembled inside of the turbine to convert the rotational 

movement into electricity by magnetic induction. This novel system is currently 

undergoing a patent process through the University of South Florida Patent Office. 

The turbine rotor is the first innovation of the model. The rotor includes six 

notched blades supported in a central hub, and two disks in the internal rotor cavity, 

increasing the internal pressure and optimizing the flow to have an impact on each 

blade. The rotor design is a new immersed cross flow model never used before. Rotors 

of traditional impulse turbines consist of several blades joined to a common hub. The 

blades are separate pieces assembled in a common center (hub) to form the rotor. The 

blades of this design are different compared to all turbines reported [1], [3], [4], [6], [15]–

[17], [22]–[27], because the rotor structure is one piece divided in three parts: a 

cylindrical central hub, two discs on top and bottom of rotor, and nine miniature notched 

blades connected around the cylindrical hub, and supported by the rotor discs. The 

miniaturized notched blades have a semicircular curvature, complemented with a notch 

in the internal edge of each blade, fixed by three sides, top, bottom, and center, of the 

rotor, to spin about the central axis of the rotor (hub). 

The second innovation, the miniaturized casing, was developed to channel a 

continuous flow through the system, help maintain a constant velocity, and direct the jet 
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stream to the tip of the rotor blade. These conditions create an environment conducive 

to increased rotor rotation. Traditional impulse turbines [6], [15], [16], [18], [19], [28]–

[30], such as the Pelton system, have an orientation and fixed position, and do not 

require a pressure around the rotor chamber, because the fluid jet is created by the 

nozzle prior to reaching the blades; in general the fluid is in free flow after blades are 

impacted. Our system, however, fulfills a different function compared to the one found in 

the Pelton casing, which is only to protect the surroundings from water splashing. This 

special casing and miniaturized notched blades are designed to optimize the fluid 

injected at the inlet, contain and control the pressure of the working fluid through the 

turbine, and maintain volumetric pressure on the surface of the blades that are not 

receiving the initial fluid stream directly. Also, considering biomedical applications and 

systems that provide flow pressure into the turbine blades, the distance between the 

blades and the stator walls were increased to prevent drastic alterations and changes in 

pressure and flow of the system where implants may occur. This prevention is not 

addressed by the Pelton system [15], [18], [19]. 

The third innovation in this research is the adaptation and assembly of a 

brushless machine model, which was inspired by the principles and shape of a micro 

hard drive disk motor. The rotational parts of the brushless machine (ring of permanent 

magnets) are attached on the rotor, while the static parts (coils) are attached inside of 

the turbine casing. The importance of incorporating a brushless machine in this design 

is to provide the mechanism by which the system will convert mechanical energy to 

electricity. 
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In summary, the final result of this research is a miniaturized system capable of 

producing electrical energy by the use of a novel notched blade turbine.  The turbine 

has an attached magnetic system that induces electric current in coils when a fluid 

rotates the turbine rotor.  

1.4 Current State of the Art 

The conversion of mechanical energy to electricity using the clean and free 

energy produced by small flow of water, and microfluidics systems is being researched 

and will be a transformative innovation to energy problems, and an alternative to create 

self-powered micro and nano portable devices, as well as to replace invasive and toxic 

devices, used as power supplies. [[3], [5], [8]–[10], [31]]. 

Models such as the macro hydroelectric systems are used to develop new micro 

and nano energy systems moved by any kind of flow, because these are the more 

common way to produce clean energy, on demand around the world, and one of the 

main parts of those systems is the turbine [19], [25], [32], [33]. Computer-aided 

manufacturing (CAM) and microfabrication processes are being used in miniaturization 

of traditional turbines models, which could be used to develop tiny power supplies 

and/or self-powered systems, but precision in the assembly of parts, requirements of 

size and shape, and adaptability to applications are still waiting to be solved, and this is 

precisely the core goal of this research. 

Some so called micro turbines, with sizes minor of one square meter, have been 

developed. They have good responses and  applicability in small generators systems 

such as farms, small towns or houses [6], [28], [33]–[35]. These kind of  systems use 

the small water fall force to produce an amount of energy of median power, capable of 
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powering home machines, or small industrial equipment, but cannot be used on 

portable devices.  

The use of computer-aided manufacturing (CAM), 3D printers, and the 

microfabrication processes have open new possibilities in the scaling down of macro 

systems, which can be used in portable devices. Currently, research groups are working 

on  microfabrication processes to develop micro and nano generator systems to be 

used in portable devices, medical and environment applications, and communication 

systems [1], [3], [7], [11], [22], [27], [36]–[44].   

Energy harvesting has become increasingly interesting to engineering, material 

sciences, and the medical profession, as an answer to the proliferation of commercial 

portable devices, and medical and military applications. Efforts to develop alternative 

micro and nano generators systems have resulted in many promising technologies; 

including the use of piezoelectric semiconducting nanowires to convert energy from 

sources such as body movement or blood flow to electrical energy when they are 

twisted or deformed [45].  The use of MEMS power generators, using micro fabricated 

permanent magnets oscillating around a central shaft, due to the motion of the thorax 

during breathing, inducing a voltage across a micro fabricated planar coils [3], [7], [46]; 

and the use of a ―magnetic spring‖ placed in a daypack to generate power, which with 

the human motion vibrates easily at off resonance conditions [43]. In addition, there are 

research teams studying the possibility of producing energy using physiological 

systems, such as the respiratory system, urinary system, circulatory system [22] and the 

motion system in animals and humans [5].  
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1.4.1 Micromachines Used as Generators 

The use of turbine to electric energy generation is not recent [28]. In 1750 

Leonhard Euler [47], directed experiments on the mechanics of reaction wheels, and his 

results have been applied in modern water turbines. In 1826, Jean-Victor Poncelet, 

proposed the idea of an inward-flowing radial turbine, and years later developed the 

Francis, Pelton, Kaplan, Cross flow and Banki turbines, and new turbines with origins in 

modifications of all these models [16], [29], [30], [32]. Towards the end of the past 

century and during the 21th century, there has been increasing scholarly interest in the 

conversion of biomechanical energy, present in living organisms, to electricity [3], [22], 

[39], [48].  

The development of a simple impulse turbine for nano hydropower was reported 

by Nakanishi [6] as a hydraulic turbine, to be utilized in mountainous areas, as a 

hydropower of small water resources. The impulse turbine used by Nakanishi has 

inexpensive components, and this model is easy to build, having similarities with a cross 

flow turbine. Experimental results on a turbine prototype determined that the maximum 

efficiency of the rotor is 0.56, and the nozzle position is the key factor to improving the 

output power of this turbine. 

Dr. Martinez and Dr. Chowdhury from University of Windsor designed a MEMS 

system power generator [3], Figure 1.1. The system comprises an asymmetrical circular 

rotor and microfabricated NdFeB permanent magnets in alternating polarity. The voltage 

in this system is induced in the coils by the oscillations of permanent magnets during 

breathing and the motion of the thorax. The generator has a length x, width area of 4x4 
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mm2, 12 pole pairs in the rotor, 179 coil turns, and can generate 59.73 mWRMS output 

power per coil, and with 9.0 VRMS open circuit voltage per coil. 

 

Figure 1.1  A conceptual 3D model of a single stator generator. From Martinez et al. [3] 

 
Seoul National University developed a radial microturbine [27]. Using MEMS 

technology they fabricated a stack of five wafers, using photolithography, DRIE, and 

bonding processes.  The design used 31 stator blades and 24 rotor blades, reporting a 

maximum rotation speed of 11,400 rpm and a flow rate of 16,000 standard cubic 

centimeters per minute (sccm) achieved in performance tests. 

Reynaerts, Peirs, and Verplaetsen have introduced an axial turbine for electric 

power generation [1]. This turbine is a miniature gas turbine that generates electrical 

energy from fuel.  Fig. 1.2 from Reynaerts et al. [1] and [49] shows details of this design. 

The turbine was produced with electro-discharge machining (EDM), with a rotor 

diameter of 10 mm, and the housing has a diameter of 15mm and is 25mm long. The 

turbine was made of stainless steel using die-sinking electro-discharge machining. It 
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was tested to speeds up to 160,000 rpm, generating a maximum mechanical power of 

28 W with an efficiency of 18%.  

 

   

The design, fabrication, and characterization of a rotary micromotor supported on 

microball bearings is another micromachine reported by Ghalichechian, Modafe, Beyaz, 

and Ghodssi [50], design shown in Fig 1.3. They designed a rotary micromotor to be 

used in centrifugal micropumps, which could be applied to fuel-delivery and cooling 

applications. Micro fabrication was used to develop the micromotor, where stator and 

rotor fabricated separately are assembled with microballs coated with a silicon carbide 

(SiC) film to reduce the friction. Microballs housing coated with SiC and fabricated on 

the stator, plus Microballs housing coated with SiC and etched in the rotor, produced a 

response 44 times higher than the velocity previously reported in linear micromotors. 

Figure 1.2  Left side: Nozzle disc, turbine rotor, and bearings. Right side: microturbine 
design. From Reynaerts et al. [1] and [49]. 
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Figure 1.3  Simplified 3-D schematic of the rotary micromotor. From Ghalichechian et al. 
[50].  

 

The MEMS Rotary Engine Power System project results were presented by 

Fernandez-Pello, Pizano, and other members from the Berkeley Sensor & Actuator 

Center of the University of California at Berkeley [11]. An integrated generator design 

using nickel-iron alloy electroplated in the engine rotor poles, served as the generator 

rotor. 4 Watts of power at 9300rpm was generated using a 12.9 mm diameter Wankel 

engine. 

The project challenge was the design of an efficient and clean micro engine to 

transform hydrocarbon fuel to electricity, and the goal was to develop an electrical 

power output of 90 milliwatts from the 2.4 mm engine.  
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Kinetron Company offers different rotational micro generators such as water 

turbine generators for converting Kinetic energy in electricity [51], [52]. These use 

permanent magnets rotating within coils in a miniature variant of a conventional 

electrical generator. The smallest devices have millimeter sizes and rotational speed of 

5000 rpm, and can produce 2.6 Volts at a frequency of 580 Hz, generating around 15 

mW of power, according with the model used. Figure 1.5 shows a CAD model of micro 

generator, and one water generator offered by Kinetron Company. The pictures in 

Figure 1.5 were taken of Kinetron web-page [51]. Also, all information about Kinetron 

products can be found in the same reference. 

 

 

Figure 1.4  Integrated electric generator schematic. From Fernandez-Pello et al. [11] 
 

1.4.2 Permanent Magnet Generators 

Chen, Pan, and Liu reported [40] ―the analysis and the prototype of a micro-

electromagnetic generator‖ measuring 9x9x1 mm3. The generator is constituted by 

multilayer silver microcoils of different shapes, and multipolar planar permanent magnet 
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of 1.4T of residual induction. The generator produces a maximum theoretical induced 

voltage of 218.127 mV in the microcoil, when the permanent magnet (PM) is moving at 

1395.34 rad/s relative to a microcoil. The PM has an outer diameter of 9 mm, a 

thickness of 700 μm, fabricated by sintered Nd/Fe/B (neodymium/ferrum/boron), while 

the microcoils were fabricated using low-temperature co-fired ceramic (LTCC) 

technology. Figure 1.6 from Chen et al. [40] is showing the different coil shapes and the 

permanent magnets used in this design. 

 

 

Figure 1.5  Kinetron Company micro generator. (a) 3D drawing of micro generator; and 
(b) the water turbine generator. Public Domain image [52]. 

 

 
Figure 1.6  In-plane electromagnetic micro-generator. (a) Diagram of the micro-
generator; (b) the diagram of a square-shaped, and circle-shaped micro-coils; (c) The 
multipolar permanent magnet. 



www.manaraa.com

13 
 

The modeling, design, fabrication, characterization of permanent-magnet (PM) 

generators, to be used in microscale power generation systems was presented in 2006 

by Das et al. [53], [54]. The generators were synchronous machines, three-phases of 

axial-flux, with eight-pole, and constituted by surface-wound stator and PM rotor. The 

machines were modeled as a set of continuous planar layers. The open-circuit voltage 

predictions were established with 3-D finite-element analysis simulation results. The 

devices were fabricated using a combination of microfabrication and precision 

assembly. The stators were fabricated using electroplated windings. The mechanical-to-

electrical power conversion reported was of 2.5 W with a rotational speed of 120 000 

rpm, but using a resistive load. However, after passing by a transformer and rectifier 

output, the electrical power delivered was of 1.1 W of dc electrical power. The results 

and conclusions of Das et al. [53], [54] contributed to determine that indeed watt-level 

power production is achievable using miniaturized magnetic machines and 

demonstrated the viability of scaled PM generators to be used in small applications. 

Cordero et al. [38] presents the development of a micro-rotational 

electromagnetic generator for high speed applications. The generator uses a rotor 

composed of 20 NdFeB 6x2x1 mm permanent magnets with multiple-poles orientation 

and axial flux; and a stator with dimensions of 25 mm in diameter and 2 mm thick. The 

stator has 10 stacked micro-fabricated planar copper-clad polyimide coils. The planar 

micro-coils were manufactured by photolithography, whereas the permanent magnets 

were assembled in the rotor using a CNC-machined slotted disk, and produced 5.8 mW 

when the rotor moved at 4000 rpm. The experimental results are shown by Cordero et 

al. [55].  
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Figure 1.7  PM generator: (a) perspective view and (b) cross section area. From Das et 
al. [53], [54]. 
 

 

 

Figure 1.8  Micro-rotational electromagnetic generator for high speed applications. (a) 
Schematic of the micro-rotational generator; (b) device on testing apparatus. From 
Cordero et al. [38]. 
 

1.4.3 Implantable Devices Used in the Physiological System 

In recent decades, implantable devices that use micro motors and micro turbines 

have been developed as medical alternatives to treat heart failure and other kinds of 

human physiology problems. Ventricular assist devices (VADs) are one example, and 
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many models were presented by Timms Danniels in 2011 as ―a review of clinical 

ventricular assist devices‖ [35]. The review briefly shows rotary devices such as left 

VADs or LVADS, which are clinically available, being in lab tests, or in clinical trials with 

humans and animals. Products such as the HeartWare [56], ‗HVAD‘ [57], Thoratec 

‗HeartMate IXVE/IP‘ [58], Thoratec ‗IVAD/PVAD‘, Abiomed ‗BVS5000/AB5000‘ [59], 

Thoratec ‗HeartMate II‘ [60], Jarvik Heart ‗Jarvik 2000 FlowMaker‘ [61], [62], Berlin 

Heart‗InCOR‘, WorldHeart ‗Levacor‘ [57], Terumo ‗DuraHeart‘ [63], Abiomed ‗Impella‘ 

[64], and CircuLite ‗Synergy‘ [65], are miniature ventricular assist devices, which use 

rotary axial and/or mixed flow, and are used in pumps to control the flows of air or 

liquids into the body. 

 
Figure 1.9  Ventricular assist systems. (a) Thoratec IVAD™ Ventricular Assist Device; 
(b) HeartWare® Left Ventricular Assist Devices (LVAD); and (c) Abiomed AB5000™ 
Ventricular Assist Device. 
 

The pictures in Figure 1.9 are from [66], [67]. The Thoratec IVAD™ is an 

implantable cardiac assist device pneumatically operated, that can provide left, right or 

biventricular support, which can deliver up to 7.2 l/min. The housing is made of titanium 

and is a compact size to accommodate a wide range of patients, including those who 

were previously unable to receive an implantable, pulsatile device [57], [68].  The 

HeartWare® [56] Left Ventricular Assist System (LVAS)  is a third-generation 
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continuous radial flow blood pump, implanted in the pericardial cavity for the treatment 

of advanced heart failure. The device has the capacity to produce of up to 10 liters per 

minute of blood flow using a rotational speed of between 2,000 and 3,000 revolutions 

per minute. The rotor is suspended within the pump housing through a combination of 

passive magnets and a hydrodynamic bearing [57], [68]. The ABIOMED AB5000™ [59] 

Circulatory Support System can provide left, right, or biventricular support for patients 

whose hearts have failed but have the potential for recovery. The AB5000 can be used 

to support the heart, giving it time to rest and potentially recover native heart function. 

The AB5000 can provide flow rates of up to 6 liters per minute [57], [59], [68]. 

In conclusion, there have been several energy generation systems investigated 

for various applications, but due to structural and functional restrictions and limitations 

that prevented the systems from being used under low pressure, with low flow rates, in 

closed environments, and while being immersed, the miniaturization, versatile, and bio 

functionality of these systems have been very limited.   

This dissertation work addresses these issues through the design, simulations, 

prototyping, and testing of a novel hybrid action-reaction turbine with notched blades 

and casing shape designs capable of producing continuous energy generation. 
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CHAPTER 2:  BACKGROUND AND LITERATURE REVIEW 

 
 
2.1 Mathematical Background 
 

The main purpose of this chapter is to support the design of the turbine and the 

conversion of Kinetic energy to electricity. The following sections describe the theories, 

laws, and concepts that have been used, and define the bases of the operation and 

behavior of the complete system. Through thermodynamic laws, electromagnetic 

theories, mathematics and physics concepts, it is possible to derive the relations 

between mass flow rate, cross section areas, velocities, forces, and torque, to arrive at 

the mechanical and electrical power.   

As mentioned in chapter 1, the miniaturized turbine-generator presented in this 

dissertation is comprised of two systems, the turbine and the permanent magnet 

generator (PMG). The theoretical concepts and the fundamental laws of physics, 

including equations and assumptions, plus previous design models of turbines, coils, 

and the configuration of permanent magnets attached to these turbines, are presented 

throughout this chapter to support the final results of this dissertation. 

The models developed, prototyped, and tested make use of three basic 

principles of fluid flow: the principle of conservation of mass, from which the continuity 

equation is derived, the principle of conservation of energy that yields 
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the energy equation, and the principle of conservation of momentum, used to derive the 

momentum equation [69]–[74].  Also, Newton's second law for rotation, Bernoulli's and 

Pascal‘s law, Poiseullie‘s equation, Euler‘s equation, Faraday‘s, and Maxwell‘s equation 

complement the background used to support the mathematical models [12]–[14], [69].  

2.2 Equations Governing Flow and Pressure 

The principle of fluid machines is centered on the utilization of useful work due to 

the force applied by a fluid jet, impacting and moving, over a series of blades attached 

to a rotating wheel that spins about an axis. The equations of flow and pressure in a 

tube flow system, such as in Figure 2.1, are defined through the equations of continuity 

of steady flow (mass conservation) and momentum equations [15], [69]. These 

equations may be written as follows: 

∑            2.1 

                 

                   2.2 

The variables              are density, transversal area, and velocity 

respectively. The principles of conservation of mass and momentum, which predicts that 

a fluid of constant volume and flow rate, with density ρ, and flowing during a period of 

time through an area, produces simultaneously an increase in the mean velocity and a 

decrease in pressure at the outlet of the system.   

To determine the rate of change of momentum in Figure 2.1, it is important to 

analyze the momentum of fluid entering and leaving in the stream conical pipe in the 

time Δt. The volume of the fluid in time Δt, is moved a distance       and the momentum 

equations can be written as 
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  ̇                         
       2.3 

                                                 

  ̇                     
       2.4 

If equations 2.3 and 2.4 are combined with Newton‘s second law, is possible to 

find the total force supplied by the fluid. The law states that the force is equal to the rate 

of change of momentum [69], [70], [73], and can be written as 

   
(     

          
   )

  
     2.5 

The equation 2.5 defines the force inside of the conical pipe, when it is acting in 

the direction of the flow of the fluid. The volume flow rate (Q) will be considered 

constant through the system, if the fluid is incompressible, density ρ is constant, and 

one dimensional [69], [70], [73]. The expression governing Q will be written as  

                   2.6 

where nozzle area is defined as 

     (
  

 
)  (  )     2.7 

Therefore the    and    equations can be used to rewrite the force equation  

      (      )      2.8  

The Bernoulli equation defines the fluid dynamic relationship between fluid 

velocity (v), fluid pressure (p), and height (h) [69], [70], which describe the behavior of 

fluids in a tube, but some assumptions such as flow viscosity = 0 (internal friction), 

constant density (ρ), steady flow, and Incompressible flow, must be defined to assure 

the applicability of this equation. The analysis of forces and velocities in a turbine could 
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be developed using similar shapes and variables, shown in Figure 2.1 and 2.2, and 

reported by [69], [74]–[77]. 

 

 
Figure 2.1  Pipe tube in gradual contraction. 

 

 
 

Figure 2.2   Jet velocity: From nozzle the first blade is impacted. 
 

Bernoulli‘s equation [69], [70], is defined as: 

    
    
 

 
         

   
 

 
         2.9 

where 

ρ = fluid density (kg/m3); 

g = acceleration due to gravity on Earth (m/s2); 
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h = height from an arbitrary point in the direction of gravity (m). 

pin = Inlet pressure (N/m2, Pa). 

pn = Nozzle pressure (N/m2, Pa). 

    = mean inlet velocity (m/s). 

   = mean nozzle velocity (m/s). 

If  h1=h2 , then the equation is reduced to: 

 

 
(  
     

 )             2.10 

on the other hand, the potential power or power extracted [69], [70], [73] from the 

turbine nozzle (Pn) is  

             2.11 

but,  

   √         2.12 

to find an expression to power (Pn), in function of known and defined variables, combine 

      and   equations: 

   
     

 

 
      2.13 

The velocity triangle shown in Fig. 2.3 is typically used to explain the interaction 

between the fluid and the blades in a turbine, and determines the components of 

velocities and the forces acting on the rotor. The rotor is moved by the action of forces 

from the nozzle jet stream, which impacts the blades. The kinetic energy is transformed 

to mechanical energy, producing a continuous spin of the rotor. The mass of the liquid 

striking the blades per second [78]–[81] is given by 

 ̇             2.14  
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where    is the transversal area of the nozzle,    is the velocity of the fluid from nozzle 

to blades, and   is the density of the liquid. The product of mass of the fluid striking per 

second and the component of velocity impacting the blades in tangential direction (   ) 

is known as the momentum of the fluid striking the blades [69], [73] and the general 

equation is given by 

    ̇                 2.15 

similar momentums are produced by the fluid from the nozzle, striking the blade, and 

the fluid striking the outlet of each blade. The new components are     in the tangential 

direction of the blade inlet, and     in the tangential direction of the outlet of each blade. 

The velocity components can be positive or negative. If it contributes to the movement, 

it is positive, otherwise it will be negative. 

 

 
 

Figure 2.3  Velocity triangles. 
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If the momentum of the liquid at the nozzle and the momentum leaving the blade 

are combined as a product of radial distances, the results will be the angular momentum 

per second at the inlet and at the outlet of the blade. 

                    2.16 

                    2.17 

The equations 2.19 and 2.20 are related in the impulse momentum theorem [69], 

[70], [82], which states that the rate of change of angular momentum is equal to the 

torque on the wheel or torque on the rotor. The equation is given by  

                             

       (           )    2.18 

also, the torque equation could be written as, 

             2.19 

where    is the total force applied to each blade, in a direction tangential to the rotor, 

and    is the distance or radius from which the forces are applied, measured from rotor 

axis of rotation. 

Power from the turbine (Pr) is a function that relates torque and angular velocity, 

and is expressed in the Euler turbomachine equation [47], [69], [70]. The power 

delivered to the fluid is thus, 

           2.20 

The angular velocity   and torque T are variables that characterize the rotor 

behavior, which were defined in equations 2.18 and 2.21, 

    
  

  
      2.21 
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the    variables are the blade tangential velocities, measured in different points with 

radius    measured from the axis of rotation to each defined point on the blade. Finally, 

the power from the rotor is a relationship between rotor torque ( ) and angular 

velocity( ). The rotor torque is in direct relation with the forces impacting the blades, 

especially the blades located between the nozzle output and the turbine output zone as 

shown in Figure 2.4. 

 
Figure 2.4  Blades located between nozzle and the turbine output 

Finally, all equations are related in one expression known as efficiency of the 

system ( ) [69], [70], [77], which reflects the system‘s behavior, showing the percent of 

losses into the system, when the potential energy is converted to mechanical energy. 

The efficiency is calculated with the following relation, 

           ( )  
  

  
     2.22 

2.3 Equations Describing Electromagnetic Field 

There are constitutive relations in electromagnetic systems which describe how 

two or more physical parameters are related, depending on the medium‘s properties 
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involved in the process. The relationship between electric field intensity (E) and the 

conductive current due to the movements of free charges (J) is given by the microscopic 

form of the Ohm‘s law,        and     , where   and   are electric conductivity and 

dielectric permittivity; also, the relationship between the magnetic induction or magnetic 

flux density (B), the magnetic field strength (H), and the magnetic polarization (M) are 

given by      and     , where   and   are the magnetic permeability and 

magnetic susceptibility [13], [14], [83], [84]. Assuming,             describe the 

electromagnetic properties of a material, then an electromagnetic phenomena can be 

described by four relationships known as Maxwell‘s equations [13], [14], [84], which 

describe how objects can be influenced by the propagation of electric and magnetic 

fields and how the system response could be in accordance with that kind of 

electromagnetic input. The simpler form preferred by authors in books [13], [14] and 

papers [12], [85], [86] are written as, 

   ̅   ̅  
  

  
     2.23 

this equation is known as Ampere‘s law, and  

    ̅   
  

  
      2.24 

is known as Faraday‘s law. Now, using a form of the Gaussian theorem and the 

relationship      [87]–[89], the next two equations are derived. The magnetic 

Gauss‘s law states that if the magnetic source is contained in a closed surface, the net 

magnetic flux crossing through this surface is zero, 

   ̅         2.25 

the relationship between magnetic field intensity H and magnetic field density B can be 

written as 
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     (    )       2.26 

where    is the relative permeability of the medium (unit less) and µ0 is the magnetic 

permeability in vacuum (        
          ) [87]–[89]. 

Finally, the magnetic Gauss‘s law may be derived from Faraday‘s and Ampere‘s 

laws going from open surface to become a closed surface. This Maxwell equation is 

defined in terms of electric flux density and electric charge density, to state how the 

electric field acts around electric charges. 

   ̅         2.27 

The total magnetic flux density B inside the magnetic material and the presence 

of an external magnetic field H, are related through magnetization M, and can be written 

as 

   ̅    ( ̅   ̅)      2.28 

Equations on section 2.3 are used to define any electromagnetic system, but in 

this dissertation I only use the equations involved in the conversion of kinetic energy to 

electricity through an electromagnetic induction and starting with Faraday‘s law. In 

1831, Michel Faraday discovered the phenomenon known as electromagnetic induction. 

His experiments demonstrated that an electric current is induced, in a wire in loop 

shape, by changing the magnetic field. Faraday‘s law states that an electromotive force 

(emf) is generated, if for any reason, the magnetic flux changes with the time.  The 

average of emf, induced in a coil of N turns is expressed in the following equation: 

    (
    

    
)    

  

  
   

  

  
     2.29 
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where   is the number of turns on each coil,   is the angular velocity, and   is the 

magnetic flux. The magnetic flux is the total flux through a surface.    is found by 

integrating the flux density over this area 

  ∫         2.30 

 if the flux density is constant through this area, the above equation will be expressed 

as, 

   ⃗                 2.31 

where   is the angle between   ⃗  and the normal vector from a transversal coil area   , 

so if the spatially uniform magnetic field  ⃗  is used, this equation will be written as  

               2.32 

where    is the radius of the stator surface,    is the coil arc, expressed in radians, and 

   is the effective axial length of each coil. The combination of flux density and magnetic 

field produce the induced voltage equation which can be written as  

    *
 

  
(      )+    *(

  

  
)       (

  

  
)           (

  

  
)+ 2.33 

As is stated in Farady‘s law [90], [91], the three components of the induced 

voltage equation determine that an emf can be induced, by modifying at least one of the 

three parameters involved in this expression, the magnetic field, the coil transversal 

area, or the angle between    and  ⃗ . In this research work, only the case when the 

magnetic field is rotated around the coils is considered, resulting in the following 

equation, 

    *
 

  
(      )+    *(

  

  
)     +    *(

  

  
)       +   2.34 
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this equation represents the variation of the electromagnetic field into the coils, which 

induces currents into coils and generates emf (voltage) in the coils terminals.  

  Faraday‘s law of induction is a basic law of electromagnetism, which supposes 

that a magnetic field will create an electric current, relating to the operating principles of 

generators, electrical motors and transformers; also, Lenz‘s law reaffirms the 

applicability of Faraday‘s law, which states that the induced emf in the coil, results from 

a changing magnetic flux, and has a polarity that leads to a induced current, which in 

turn tends to oppose the change in magnetic flux that induces such currents. 

The interaction between PM‘s and the stator coil slots and the effects produced 

by electromagnetic forces will be presented in the next chapter, but the analysis of 

some effects which could unbalance the system or generate cogging torques will be 

presented as future works that will complement this theoretical analysis.  

2.4 Permanent Magnet Machines  

The development of permanent magnet (PM) machines have grown significantly 

in the last ten years [92]. This is associated with the development of power electronics, 

and the high demand in applications such as mixers, pumps, and micro 

motors/generators, used in medical equipment, domestic machines and industrial and 

military devices. The International Union of Pure and Applied Chemistry (IUPAC) 

defines a group of seventeen chemical elements in the periodic table as rare earth 

elements or rare earth metals, scandium (Sc), yttrium (Y) and the lanthanides — 

lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), 

samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), 

holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). These 
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elements mixed with other metals can produce new materials or alloys, with superior 

magnetic characteristics, increasing melting point and strength properties, which 

convert them into a new alternative to improve old systems and to make new devices 

and systems with high technological demand.  

Taken from DOI, U.S. Geological Survey, Circular 930-N; Table 2.1 shows rare 

earth materials and applications. Currently, rare earths materials such as neodymium 

(Nd) and samarium (Sm) are the principal components of alloys to create modern 

magnetic applications. Neodymium-iron-boron magnets (NdFeB) are the most common 

type of magnets commercially available because they have high intensity at a very low 

volumes, which allows them to be used in the miniaturization of electronic devices and 

can be manufactured in a wide range of shapes, sizes, and grades [93]. These kinds of 

magnets are made from an alloy of neodymium, iron and boron and are being used in 

mini and nano scale applications. Table 2.2 from Minowa 2008 [94], shows some 

applications where PM‘s are being used. 

A PM machine is a kind of electro-mechanical device that converts electrical 

energy to mechanical energy or vice versa, using the magnetic, electric and mechanical 

properties of materials and devices involved in the system to transform the energy 

(physical change) from one form to another. Many designs of PM machines have been 

developed according with the applications, where orientation, shape, number of poles, 

and size were the more important parameters taken into account. Configurations of 

PM‘s and coils model designs are shown in Figures 2.5 and 2.6. 

http://en.wikipedia.org/wiki/Alloy
http://en.wikipedia.org/wiki/Neodymium
http://en.wikipedia.org/wiki/Iron
http://en.wikipedia.org/wiki/Boron
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Table 2.1  Major uses of individual rare-earth elements. Credit: U. S. Geological Survey 
U. S. Geological Survey/Table by USGS/Ft. CO et al. [95] 

 
 

 

Figure 2.5  PM‘s shapes and orientation. Axial orientations are shown in (a) and (b), 
radial orientation is shown in (c). 

Table 2.2  Products utilizing Nd magnets. From Minowa et al. [94] 

Field Products 
Computer VCM for HDD 
Domestic Air conditioner, refrigerator, washing machine, cleaner, digital camera, electric shaver 
Audiovisual Mobile phone, speaker, DVD, CD, mobile music player 
Industrial Elevator, industrial robot, injection molding machine, NC processing machine, linear 

motor 
Automobile Driving motor for HEV/fuel cell/electric power steering system, car sensor 
others MRI, motors for trains, wind power generators, electric bicycles 

HDD, hard disk drive; HEV, hybrid electric vehicle; MRI, magnetic resonance imaging; NC, numerical 
control; VCM, voice coil motor. 
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Figure 2.6  Coils shapes used in PM machines. 
 

2.5 Permanent Magnets (PM) Brushless Machines 

PM‘s brushless machines are electromechanical systems which can be operated 

as generators or motors.  There are different topologies of PM brushless machines [90], 

[92], [96], [97], but these can be grouped in two general types: radial flux permanent 

magnets (RFPM) and axial flux permanent magnets (AFPM), which in turn can be 

classified into slotted or slotless, and internal or external rotor. Although various rotor 

and stator topologies may be employed to develop motor and generator machines, the 

most common RFPM and AFPM uses configurations of permanent magnets attached 

on the rotor, and the coil or armature winding, mounted on the stator. The magnetic 

distribution and flux flow direction are the principal differences of AFPM and RFPM 

machines. The magnetic field in RFPM machines flows radially between rotor and 

stator, while the magnetic field in AFPM flows axially in the direction parallel to the 

vertical axis of the rotor.  Figure 2.7 shows a RFPM machine schematic. 

Permanent-magnet brushless turbine generators are machines (PMBLM) that 

produce electricity through variation magnetic field created by moving PM‘s, which 

induce currents within stator windings. The core benefit of a PMBLM, is that it does not 
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require any additional or external excitation current. Table 2.3 shows some advantages 

and disadvantages of PM brushless machines. 

 

Figure 2.7  Permanent magnet machine. (a) Magnetic field in radial, (b) 9 coils in 3-
phase configuration. 

 
Table 2.3  Advantages and disadvantages of brushless machine type [90] 

 Advantages Disadvantages 

Brushless 
Permanent 
magnet 
Machine 

 Smaller and lighter designs can be developed. 

 High power density (factor) 

 Easily implemented, reduced maintenance cost and 
operating costs for some types of machines. 

 Minimal energy losses in the rotor 

 Easily automated 

 Good speed vs. torque. characteristics. 
 Large air-gap length 

 The price of magnets used defines 
the final cost 

 The system could suffer 
demagnetization of permanent 
magnets by excesses of 
temperatures and other physical 
conditions. 
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CHAPTER 3:  CAD-DESIGNS AND MATHEMATICAL MODELS 
 
 

This chapter presents the geometries, CAD designs, and the results of 

theoretical calculations involved in the development of the miniature generator system. 

The chapter is divided into three sections and describes the geometries used and 

theoretical calculations which support the computer aided-designs (CAD) of all parts of 

the turbine and the magnetic generator system. The first part is centered in the turbine 

system, the second in the motor generator system, and the third is the integration of 

both in a closed system. 

3.1 Turbine System Final Design 

In the development of this dissertation, many CAD design models were 

simulated, analyzed, and some prototypes were built and tested. The critical parameters 

observed in each model included: the mechanical and electrical power, efficiency, size, 

shape, and easy of fabrication. Also the available resources and university facilities 

were another fundamental point, because these determined the final cost and the 

possibility to develop the models at USF laboratories. This long process was used to 

search the best model bearing in mind future applications. The final model was 

simulated and analyzed in transient and steady states and the results are shown in 

chapter 4. The turbine is divided in two main parts: rotor and holder or casing. The 

design model of both turbine parts is detailed in the following sections of this chapter.  
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3.1.1 Rotor Design 

The Micro generator includes a new model of impulse turbine with immersed 

rotor, which additionally uses reaction characteristics to contribute to the rotor spin. The 

rotor structure is divided into three parts: a cylindrical hub, two support discs on the top 

and bottom of the rotor, and notched blades arranged concentrically around the 

cylindrical hub supported by the two rotor support discs. The blades have curved forms 

to improve the capabilities of the design. The intersection point between the reference 

line and the radius of the internal circle R3, plus the blade thickness, defines the shape 

and curvature of each blade. Figure 3.1 shows the geometry used in the blade design, 

where the reference line is 45o degrees, the radius of the inner circle is half of the total 

turbine radius (R3 = 2.15 mm), the rotor thickness is 10% of the total turbine radius, the 

internal blade radius R=1.9 mm, and the internal blade arc is 90o degrees, measured 

between intersection point denoted as A (intersection point of the vertical axis and the 

circle of radius R2) and intersection point denoted as B (intersection point of reference 

line and the circle of radius R3). 

The rotor design, Figure 3.3, utilizes a semicircular notch on the internal proximal 

edge of the blades. The notches are centrally located about the tangential axis of the 

turbine. The radius of the notches arc is equal to or less than half of the radius of a 

blade. Notch geometry is shown in Figure 3.2. The internally notched blades permit a 

continuous circulation of fluid inside the rotor chamber, which decreases the possibility 

of clogging, fouling, or stagnation of the flow. As part of the reaction benefits, the notch 

also assures more interaction between the fluid and the blades because at the time of 

jet stream impact to the blade, the notch redirects the fluid and more than one blade is 
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impacted increasing the impulse force and the angular velocity of the blades. When the 

blades are initially impacted by the liquid, the direction of the liquid is changed, but the 

notched blades are able to redirect around 40% of the fluid to the outer surface of the 

next blade of the rotor chamber, adding more force that contributes to the continuous 

spin of the rotor. Therefore, the notch not only contributes toward increasing rotation, 

but towards minimizing the vortices between blades, thus, guaranteeing the proper 

rotation of the fluid inside of the rotor chamber and between blades. 

 

 

Figure 3.1  Rotor geometry. 

As is shown in Fig. 3.3, the rotor consists of a circular solid disc with 6 blades, 

also called ―buckets‖, and the top and bottom of the blades are supported in a circular 

disc to assure blade stability, and to canalize and redirect the fluid flow to the central 

hub or the internal notch of each blade. Complementally, the top and bottom of the rotor 

have a special design, which joins the hub and the blades in a unique piece, making the 
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blade stronger and increasing its resistance. Also, the top and bottom design helps to 

support the assembling of the spindle machine, which finally will convert the mechanical 

energy to electric energy. The final rotor design viewed in different positions is shown in 

Fig. 3.4. 

 

Figure 3.2  Notch geometry. 
 

 

Figure 3.3  Rotor isometric and top plane section view. Isometric - left side, and rotor 
top plane section view – right side. 
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As is shown in Fig. 3.3, the rotor consists of a circular solid disc with 6 blades, 

also called ―buckets‖, and the top and bottom of the blades are supported in a circular 

disc to assure blade stability, and to canalize and redirect the fluid flow to the central 

hub or the internal notch of each blade. Complementally, the top and bottom of the rotor 

have a special design, which joins the hub and the blades in a unique piece, making the 

blade stronger and increasing its resistance. Also, the top and bottom design helps to 

support the assembling of the spindle machine, which finally will convert the mechanical 

energy to electric energy. The final rotor design viewed in different positions is shown in 

Fig. 3.4. 

 

 

Figure 3.4  Rotor CAD design. 
 

 

3.1.2 Holder Design 

The holder or casing is a new design which is the final product of three years of 

research work. The CAD designs, simulations, prototypes and testing of pieces, helped 
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find the best model, and were done according to potential applications as well as to 

satisfy the basic principles of stability, compatibility, adaptability, and simple assembly. 

The holder is divided in three sections: Inlet-Nozzle, rotor chamber, and outlet. The 

input and output of the turbine were designed using a standard circular shape, with 

initial inlet and final output diameters of 4 mm, which is an ideal size to connect the 

micro turbine with microfluidic systems such as the circulatory system, micro pumps, 

mixers and refrigeration systems found in medical equipment, automotive systems, and 

home appliances.  

 

Figure 3.5  Inlet turbine geometry. 

The Inlet-Nozzle section, Figure 3.5, shows a gradual contraction between the 

input and the nozzle, where a conical section is formed with sharp discontinuities at the 

intersections. The inlet and nozzle dimensions used are a response to the laminar 

behavior requirement, especially in the blood system. The nozzle geometry has 10o 

degrees of inclination with respect to the horizontal axis, to concentrate the jet on the 

maximum area of the first blade and optimize the impact. Also, this inclination 

contributes to the discharge through the notch and reduces the vortices in the central 

area of the rotor. The inlet was designed into a gradual contraction pipe or funnel shape 
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to create a venturi effect with the fluid flow, increasing the output velocity of the fluid at 

the nozzle and focusing the jet on the blades.  

The rotor chamber and the outlet section have new and special geometries that 

permit free flow circulation to the output. Figure 3.6 shows the casing CAD design. The 

rotor chamber was designed with a curvature, which combines parabolas and circular 

geometries, to ease the flow discharge, and direct the impact of the fluid on more than 

one blade, and to increase the pressure on the output area of the turbine. The outlet 

section is designed to reestablish the inlet pressure which was modified when the fluid 

crossed the inlet conical section to later to be introduced through the nozzle to the rotor 

chamber.  

In addition, the curved shape of the walls surrounding the rotor chamber 

contributes to the free flow of the fluid, avoiding any type of accumulation or stenosis, 

thus reducing stress on walls and assuring a good fluid displacement to the outlet 

turbine. Finally, and looking to have the best adaptability, the inlet and outlet of the 

turbine were designed as circular pipes given that it is the most common shape used to 

transport and connect microfluidic systems. 

In summary, Figure 3.7 shows all the characteristics of the turbine casing, where 

inlet, rotor chamber, and outlet were defined according to biomedical and circulatory 

system specifications. The rotor chamber was designed to keep the turbine rotor 

aligned in the center and frictionless and to keep a variable gap between rotor and 

enclosing walls. The gap contributes to the circulation and redirects the fluid to the 

blades; also, the gap design avoids the friction when the rotor is in motion. The outlet 
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chamber is a free zone to discharge the fluid from rotor chamber with a conical shape 

and circular end.  

 

Figure 3.6  Turbine casing design. 

3.1.3 Turbine Mathematical Model 

The miniature notch turbine system is a new turbine model, especially designed 

to work with microfluids in immersed conditions. Given its novelty, a new mathematical 

model was developed to explain the physical behavior and the interrelation between 

parameters such as linear and tangential velocities, volume flow rate, forces applied on 

blades, and the required mechanical power, depending on the kind of fluid used to 

move the rotor. In the turbine mathematical model, the mass of fluid per second, 

entering from nozzle to the rotor chamber, is used to find the momentum of the liquid 

when the blades are pushed, and establishes the relationship with the forces striking the 

blades, torque and mechanical power generated by the system.  
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Figure 3.7  Turbine casing design horizontal section view. 

A vector representation of velocities and flow direction is shown in Figure 3.8, 

where red curves represent the velocity trajectories of the fluid applied from nozzle. 

Purple curves represent the permanent internal flow fluid circulation, and blue arrows 

are the forces produced by the injected flow fluid, which finally create the torque to keep 

the rotor in constant speed. Also, to concentrate the analysis and develop the 

mathematical model, three principal points, central, external, and internal, were defined 

on each blade. 

To know the minimum and maximum values of volume flow rate required to 

satisfy the mechanical power and angular velocities of this turbine, an analysis involving 

torques, forces, areas, and linear velocities affecting the blades was developed. Starting 

with the velocity and fluid flow behavior to the first blade, Figure 3.9, where the total 
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velocity is represented as the sum of angular velocity (  ) on rotor and the lineal velocity 

of flow fluid entering from nozzle  (  ). However, the analysis needed to know the real 

impact of the fluid entering on each of blade is centered on the velocity vector, which is 

a subtraction between angular velocity on rotor and the lineal velocity of flow fluid 

entering from nozzle. Figure 3.9 shows the first blade vector analysis, which represents 

the components of velocities of the working fluid in a turbomachine. This analysis 

produced as a result, the equation that connects the desired rotor behavior (speed and 

torque) with the inlet volume flow rate, velocity, and forces of the fluid flow pushing the 

blades.  

According to the shapes and geometries defined for this novel turbine, two 

velocity triangles on two points (internal    and external    points) of the first blade are 

defined, but a blade by blade analysis is developed. This is followed by the mechanical 

power and the efficiency equations of the turbine. The velocity triangles used in this 

analysis explain the flow direction and state the principal points of pressure, through 

which torque is applied to spin the rotor.  

Through the vector analysis of velocities (velocity triangles), on two points of the 

first blade, the equations which explain the behavior of the notched blade turbine as an 

impulse turbine are defined. In Figure 3.9    and     are the tangential velocities at    

and    , and    is the jet velocity at the output of the nozzle. In addition, an angle     is 

formed between the nozzle and the horizontal plane tangent to the rotor radius. Also, 

the horizontal plane and the tangential line in A2, create an angle   , just into the notch 

of the first blade, in the direction of the second blade. 
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Figure 3.8  Physical variables affecting the rotor. 
 

The system on the first blade is analyzed as an impulse turbine and the 

equations on the first blade are developed at two positions,    and    resulting in the 

tangential velocities     and    , as shown in Figure 3.9. In both cases, the results of 

the tangential velocities are functions of the nozzle velocity and the angles involved in 

the input and output of the fluid on the blade. Also, the flow fluid leaving the first blade 

has a velocity   . 
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Figure 3.9  Velocity triangle first blade. 

 

The equations 3.1, 3.2 and 3.3 are the velocity triangle analysis on the first blade, 

where     is the tangential inlet velocity,      and is the tangential outlet velocity (notch 

velocity), and    is the fluid velocity crossing the notch of the first blade, 

                      3.1 

     (          )          3.2 

          (          )            3.3 

The model of forces on the first blade was found using the geometry shown in 

Figures 3.8, and 3.9, but applying the momentum balance analysis combined with the 

velocity triangles. Also, the torque equation on first blade was found as the product of 

these forces and the radial distances. The equations 3.4, 3.5 and 3.6 develop the 

analysis of forces and torques on first blade, 
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        (        )  (          )(        )   3.4 

     (            )    [       (            )    (            )] 

     [(          )(            )]   3.5 

         (            )     3.6 

where  

  (           )      3.7 

 

The analysis to find the equations on the second blade starts with the flow fluid 

from the first blade after passing by the notch, and goes until it totally leaves the second 

blade, but includes the central impact on second blade. As Figure 3.10 shows, the 

velocity    from the notch area of the first blade enters to the second blade with an 

inclination angle   , measured between the central point of the second blade, in the 

tangential direction to the rotor.   

   is the inlet velocity at the second blade, but has an inclination angle    casing 

measured between the flow fluid direction and the center blade on the tangential line of 

this point. Figure 3.10, shows the geometry, while the equations for the second blade on 

the          and the central point     are described in equations 3.8 to 3.20 

          (            )            3.8 

where tangential inlet velocity on second blade, denoted as     is written as,   

             (      )       [(            )         ]       

    [(            )         
  
  
]       

                         (      
  

  
)         3.9 
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                     3.10 

where 

                      3.11 

    (  
  

  
     )      3.12 

 

Figure 3.10  Second blade analysis. 
 

 
Flow fluid velocity from the first blade impacts the second blade on center place, 

then the fluid flow is divided into two components after pushing the second blade, the 
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first velocity component is directed to the external edge   , and the second component 

is directed to the internal edge    or notch. The velocities results on    and    have a 

tangential direction in the same line of the rotor tangential velocity on these points. The 

component on    is opposite of that of tangential velocity   , while the component on    

has the same direction as the tangential velocity on this point   . 

       (      )            3.13 

       (      )            3.14 

             

        (       )    (  
  

  
     )   3.15 

             

        (       )    (
  

  
 
  

  
     )     3.16 

the force on second blade is represented by 

     (         ) 

     (   [(       )  (       )])    *(  
  

  
     )  (

  

  
 
  

  
     )+   3.17 

By using the above equations plus the mass flow rate ( ̇    ) then the torque 

on second blade is found 

     (             ) 

     0   (  (       )    (       ))    .  (  
  
  
     )    (

  
  
 
  
  
     )/1 

to simplify the torque equations two constants D and E are defined, 

    (       )    (       )   3.18 

         (  
  

  
     )    (

  

  
 
  

  
     )   3.19 
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then torque on second blade is rewritten as 

     (        )    [                  ]  

     [            (    )]    3.20 

The analysis to find the equations in the next blades, third to sixth, use the same 

physical principles and the same geometry as the first and second blades, which starts 

with the fluid flow from the previous blade, passing through the notch in direction of the 

next blade at the central point of the blade. As shown in Figures 3.8, 3.9, and 3.10, 

there are components of velocity from the notch areas by each blade which enter to the 

next blade with an inclination angle   , measured between the central point of the blade 

and in the rotor radial direction. The components of velocity have the same angle on 

entry and exit on each blade, but the magnitudes of these vectors are different, having 

the maximum value in the first blade and a minimum in the sixth blade. The equations 

3.21 to 3.28 are the analysis on third blade. The triangle of velocity is written as, 

             (   (      )      )       

    (   (               )      )       

    (                     
  

  
                      

  

  
          )  

    *   
         (

  

  
          

  

  
)+   3.21 
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        (       )    (  
  

  
     )   3.24 
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        (       )    (
  

  
 
  

  
     )   3.25 

while the equation describing the forces on third blade as written as,  

     (         ) 

     (   [(       )  (       )])    *(  
  

  
     )  (

  

  
 
  

  
     )+  3.26 

the total torque on third blade is written as, 

     (             ) 
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     )/1 3.27  

if equations 3.18 and 3.19 are substituted in equation 3.27, then torque on third blade is 

rewritten as 

     (        ) 
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       )    (

  

  
            

  

  
   )+   3.28 

The equations 3.29 to 3.36 are the analysis on fourth blade. The triangle of 

velocity is written as, 
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while the equation describing the forces on fourth blade as written as,  

     (         ) 
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and the torque on the fourth blade is written as 
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if equations 3.18 and 3.19 are substituted in equation 3.35, then torque on fourth blade 

is rewritten as 
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The equations 3.37 to 3.44 are the analysis on fifth blade. The triangle of velocity 

is written as, 
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while the equation describing the forces on fifth blade as written as,  
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and the torque on fifth blade is written as 
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if equations 3.18 and 3.19 are substituted in equation 3.43, then torque on fifth blade is 

rewritten as 
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The equations 3.45 to 3.51 are the analysis on sixth blade. The triangle of 

velocity is written as, 
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while the equation describing the forces on sixth blade as written as,  
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and the torque on sixth blade 
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if  equations 3.18 and 3.19 are substituted in equation 3.50, then torque on sixth blade 

is rewritten as, 
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The rotor mechanical power is calculated as the product of torque multiplied by 

the angular velocity [98]–[102], but total torque is found as the sum of the total torque on 

each blade, and torque can be rewritten as, 

a. first blade, 

     (            )     3.51 

b. second blade, 

     (        )    3.52 

c. third blade, 

     (        )    3.53 

d. fourth blade, 

     (        )    3.54 

e. fifth blade, 

     (        )    3.55 

f. sixth blade, 

     (        )    3.56 

g. turbine total, 

     (          (                   )    (    )) 3.57 

where tangential inlet velocities on each blade are written as,  
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substituting equations 3.59, 3.60, 3.61, 3.62  and equation 3.63 in equation3.57, the 

total torque equation,    is rewritten as, 

     2       [    (     
       )]    0      .( 
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    )    (         )   /13     3.64 

As was mentioned at the beginning of this section, the objective of this 

mathematical analysis is to find a general equation modeling the behavior of the turbine 

to find the minimum and maximum values of volume flow rate required to satisfy the 

mechanical power and angular velocities of the model. The sum of torques on each 

blade or total torque, multiplied by the rotor angular velocity, produce the new 

mechanical power general equation of this turbine, which is a function involving 

tangential velocity on the rotor and the velocity from the nozzle. However, as the 

principles of conservation of mass and momentum relate the volume flow rate and the 

velocity, then the mechanical power equation developed on the rotor (      ), 

satisfied the objective.  
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Mechanical power is a function that relates torque and angular velocity, and is 

expressed in the Euler turbomachine equation [47], [69], [70]. Now, substituting 

equation 3.64 in equation 3.65, the total mechanical power of the turbine rotor is written 

as, 
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however, the maximum mechanical power developed on the rotor is found by 

differentiating the mechanical power equation and is found where the derivative is equal 

to zero. 
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finally, the relationship between inlet velocity (  ) and rotor tangential velocity is found 

by using the result of the equation 3.68, 
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if in equation 3.69, numerator and denominator are substituted by F and G, the equation 

3.69 could be written as, 
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where F and G are defined as, 
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where the maximum power is reached when 

                3.73 

Table 3.1 lists all parameters and constants used in equation 3.70 to found the 

final relationship between     and   . 

Table 3.1  Notched blade turbine dimensions. 

Turbine Dimensions Constants 

Parameter Dimension Units  Dimension Equation 
      degree    
         degree   (           ) 0.0066 3.7 

         degree              0.8528 3.11 

       degree   (      
  
  
) 0.0582 3.12 

               (       )    (       ) 0.0082 3.18 

              (  
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     ) 0.0074 3.19 
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     ) (     

      )    (         )   +-  
0.0435 3.71 

                  [    (     
       )] 0.0509 3.72 

           

   1.327 E-6        

 

On the other hand, the potential power or power extracted from the nozzle 

turbine is        , but, since      √       then a new equation to potential power is 

written as,  

   
    

 

 
      3.74 

Finally, the equations of mechanical power on the rotor and the potential power 

from nozzle equations are related in one expression known as hydraulic efficiency of the 
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system ( ) [69], [70], [77], which reflects the system behavior, showing the percent of 

losses into the system, when the potential energy is converted to mechanical energy. 

Hydraulic efficiency is the ratio of the power developed by the turbine rotor (rotor power) 

to the power supplied at the nozzle by the fluid (fluid power). The efficiency is calculated 

with the following relation, 

     
  

  
 

   
 

 
   
    

 

  

  
(        

  )

 

 
   
    

 
 (   

 

 
      

  )

   (   
 

 
)
 
 

   3.75 
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3.2 Magnetic Generator System Design 

To support the electromagnetic design, this research assumes perfect rotation in 

the radial direction and a high precision in the assembly of PM‘s and coils, keeping 

constant the gap between them, when the PM‘s are in rotation. 

In order to understand the steps to convert kinetic energy to electricity, the 

analysis of electromagnetic fields are a prerequisite. The position, shape, internal 

distribution, and the behavior of permanent magnets and coils, are key to explain the 

final results of the electricity induced into the coils by the action of electromagnetic 

induction (EMI).  

3.2.1 The Alternating Current Generator 

This research hinges on the combination of two systems to harvest the 

conversion of mechanical energy to electrical energy. The first system (previously 

analyzed) is the turbine, and the second is an alternating current generator, which uses 

electromagnetic principles to induce alternating current into coils, when permanent 
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magnets are rotated around of the wires, creating on them a periodical change of 

magnetic flux. 

PM‘s in a ring configuration, with alternated polarity and radial direction is 

combined with coils to form the PM generator. The PM‘s around the static central axis 

are rotated, and the magnetic flux from them crosses the coils to induce an 

electromotive force (emf). The coils are distributed in a central and stationary way, 

inside of the circle formed by the PM‘s ring, with the PM‘s.    

3.2.2 PM Generator Mathematical Model 

The designs of magnets and coils used here have the same shape and 

distribution as most of the commercial HDD motor designs, which use a three-phase 

system with 9 coils and 12 magnets, distributed in a ring around the coils, with radial 

alternated polarity. Also, to select the number of armature coils and the number of pair 

poles the equation from [103], which supports the currents micro motor designs used in 

commercial hard drive disk machines, was used. 

      
 

 
        3.77 

where    is the number of permanent magnets used in the ring configuration. This work 

uses a 3-phase winding with S=9 slots and a ring of   =12 PM‘s, creating a permanent 

magnet system of (S/3)/P=3/12=1/4. In this relation, the numerator 1 in ¼ is the number 

of slots for each phase in each pole phase and the denominator 4 is the number of 

poles required for a complete pattern. However, some laws and principles must be used 

to find the relationship between parameters of the permanent magnet machine. For 

instance, Ampere‘s Law relates the net magnetic field along a closed loop to the electric 

current passing through the loop, Biot-Savart‘s law describes the magnetic fields 
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induced by a current, and Lenz‘s Law states the direction of the induced electromotive 

force (emf) resulting from a changing magnetic flux which has a polarity that leads to an 

induced current in the coils. Finally, as defined in the second chapter, Faraday‘s Law 

states that an emf is generated, if the magnetic flux changes for any reason     or   

change.  

As mentioned before, the simplest practical generator consists of circular coils 

and permanent magnets rotating. The coils are stationary and the ring of permanent 

magnets rotates with constant angular velocity  , and a uniform magnetic field of 

strength B. The flux per pole area   is defined as the integral of the flux density over the 

pole area      
  

  
, (where    is the number of poles,   is the pole height, and    is the 

ring of magnets perimeter (        )   also,     is the radius of the ring of PM‘s), if 

the flux density is considered sinusoidally distributed. The flux per pole can be 

calculated using the winding function method [104]–[106], which is given by:  

  ∫   
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 ⁄
          (      )      

  

  
     

     

  
   3.78 

  
        

  
      3.79 

when the rotor is moving and the magnets spin around the coils at constant electrical 

angular velocity   , the flux linked by coil is given by: 

 ( )       (   )     3.80 

the induced voltage (emf) in the full-pitch stator coil is, 
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           )              3.81 
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the mechanical angular velocity and the electrical angular velocity are related in this 

relationship as,    
  

 
   (   is the number of machine poles and    is the 

mechanical angular velocity). 

    
        

  

  

 
      (

  

 
   ) 

                  (
  

 
   )    3.82 

the maximum value is reached when    (
  

 
   )   , then 

                       3.83 

the maximum value of induced RMS value of speed voltage is written as, 

     
    

√ 
 
           

√  
 [    ]     3.84 

Permanent magnets machines or high power AC machines may have distributed 

or short-pitch windings and a winding factor must be included in the      equation, but 

in this research this factor will be included in the general losses of the system. 

3.3 Complete Energy Generation System Theoretical Calculations 

This section presents the integration of miniature turbine and the permanent 

magnet machine to constitute the notched energy generator system. The CAD designs 

developed and explained in sections 3.1 and 3.2, are assembled and integrated in a 

system to be used as an energy harvester when a fluid goes through the system.  

Figure 3.11 shows the integration between rotor and PMs, Figure 3.12 shows the 

integration between turbine casing and coils, and 3.13 shows the CAD design of the 

completed energy generator system. Also, a new mathematical analysis is developed to 

find a general equation that establishes the relationship between the mechanical system 
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(turbine) and the permanent magnet generator system. The initial conditions and some 

predefined geometry parameters are summarized in Table 3.2. 

 
Figure 3.11  CAD integration between turbine rotor and permanent magnets. 

 
Table 3.2  Energy generation system design dimensions. 

Turbine Permanent Magnet Machine (PMM) 

Parameter Dimension Units Parameter Dimension Units 

      degree        

         degree       ( )    

         degree        

       degree            

                       

                     

                      

               1.361 E-6    

           1000-8000     

   1.327 E-6     Electrical Power 70-700    

 

The coil and magnet shapes were inspired by the motors used in computer hard 

disc drive (HDD), combined with the fundamental principles of hydro turbines. The HDD 

motor is a kind of brushless machine, which uses a conjunct of coils oriented in the 

radial direction inside a stator chamber, surrounded by a ring of frictionless permanent 

magnets, assembled on a rotor. In this research, the permanent magnetic configuration 
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is used as a magnet generator to produce current in the inductor coils, transforming the 

rotational motion of the turbine into electricity. Figure 3.13 shows the final position of 

coils and PM‘s on the turbine. 

 

 

Figure 3.12  Casing and coils integration. 

Nine coils configured in three phases are assembled into top and bottom of the 

holder exactly in the rotor chamber, to keep the coils without movement. A ring of 

permanent magnets is assembled on the top and bottom of the rotor, around the coils, 

but with a micro gap to avoid any friction when the rotor is in movement. A double 

combination of coils and permanent magnets assures a higher efficiency that finally 

translates into more energy being transformed.  
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Figure 3.13  Miniature generator parts, CAD design. 

The relationship between turbine and PM generator starts in the novel design of 

the turbine, which is integrated with the PM‘s and coils in a unique compact system. The 

final system includes the PM‘s and coils attached inside of the rotor and walls of the 

turbine without modifying the original turbine design, but using the benefits of the rotor 

spin to create a variable magnetic field on the fixed coils and to generate electricity. A 

system of three phases (  ) of electrical energy is the final result of the electromagnetic 

induction. The induction of electric currents into the coils fixed into the casing, is 

produced by the magnetic fields from permanent magnets (PMs), which spin when the 

rotor is moving. PMs assembled in alternated polarity on the rotor, and distributed in a 

ring configuration, produce radial lines of magnetic field which cross the coils in a 

perpendicular way to generate electric current, induced just when the movement of the 

rotor changes in position with respect to the PMs. 

The mathematical models and the equations developed in the previous sections 

are related through the angular velocities, mechanical angular velocity (  ) produced 

on the rotor and the electrical angular velocity (  ) which is created on the ring of PM‘s. 

As defined in section 3.2.2, the mechanical angular velocity and the electrical angular 

velocity are is related as    
  

 
  . So, if the maximum mechanical power is reached 



www.manaraa.com

64 
 

when             (   is the fluid velocity after leave the nozzle in the rotor direction, 

that is known as nozzle velocity), and        , then a new equation emerges as a 

result of combining them, 

                  (
  

 
   )          

  
  
    (

  

 
   ) 

Substituting    and the constants values (           ) then the equation is 

rewritten as, 

               
  

  
    (

  

 
   ) 

    
        

       

  

  
    (

  

 
   )    3.85 

                          (           )    3.86 

 

 
Figure 3.14  Electromotive force of the assembled system. 



www.manaraa.com

65 
 

In Figure 3.14 is shown the emf response, when a volumetric flow rate   

     
  

   
  goes through the system, with angular velocity                 and 

produces a mechanical power from the rotor,            . 

The emf equation and Figure 13.14 show the conclusion of the integration of the 

mathematical models developed, and complete the objective defined in the beginning of 

this chapter. Parameters such as volume flow rate, mechanical power on rotor, and 

voltage on each of the system phases will be analyzed in the next chapter, by using a 

scaled prototype system. Finally the behavior of the system, and the results of this 

chapter will be compared by the used of simulations. 

3.4 Energy Analysis of Steady Flow System 

In a closed system such as a turbine-generator, heat transfer  ̇ and work transfer 

 ̇ can change the energy content in the system. The energy rate balance is given by 

the first law of thermodynamics (known as the conservation of energy principle) which is 

applied to a control volume (cv) with constant fluid flow, enthalpy h, velocity v, and 

physical height z. 

3.4.1 Energy Analysis Background 

The general conservation energy equation [98], [99], [107] can be written as, 

( ̇    ̇   )  ( ̇    ̇   )  
     

  
   3.87 

where ( ̇    ̇   ) is the heat transfer net rate to the system, ( ̇    ̇   ) is the net 

power input to the system, and 
     

  
 is the energy rate of change of the total system. For 

steady flow with one inlet and one outlet, the equation can be rewritten as, 

( ̇    ̇   )  ( ̇    ̇   )   ̇     *         
    
     

 

 
  (        )+  3.88 
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Therefore, if the total system energy equation is divided by  ̇     , then the net 

rate of heat transfer to the system and the net power input to the system are converted 

in 
( ̇    ̇   )

 ̇     
       which is the net heat transfer to the fluid per unit mass, and  

( ̇    ̇   )

 ̇     
      which is the net shaft work input to the fluid per unit mass. Also, if the 

enthalpy definition (         
 

 
 ) is used [98], [99], [107], the total system energy 

equation is written as 

     
   

   
 
   
 

 
     

    

    
 
    
 

 
                       3.89 

equation 3.89 states that during steady flow work ( ̇    ̇   ) and heat ( ̇    ̇   ) 

transfer the net rate of energy to a control volume. This relationship is proportional to 

the difference between inlet energy and outlet energy, which is produced by the fluid 

flow.  

3.4.2 Energy Analysis of the Notched Turbine System 

The mathematical model developed for the notched turbine system assumes 

ideal condition parameters to produce conservation of the total mechanical energy. 

Therefore, if the energy is conserved, the total system energy equation is          

      . In addition,       because the inlet head and outlet head are equal (Head - 

the vertical distance) and the net shaft work input to the system (fluid per unit mass) is 

reduced to                               because the system is a turbine. The 

previous assumptions transform the total system energy equation as follows 

   

   
 
   
 

 
 
    

    
 
    
 

 
             3.90 



www.manaraa.com

67 
 

 
Figure 3.15  Conservation of mass principle for the notched turbine system. 

 

Since volume flow rate is constant through the turbine, and the turbine inlet 

transversal area and turbine outlet transversal area are equal, then by the law of 

conservation of mass, we could conclude that the inlet velocity     and the outlet 

velocity      are also equal. Figure 3.15 shows the physical parameters used to develop 

the thermodynamic analysis on the notched blade turbine system. The net shaft work 

input equation can then be written as 

              
( ̇    ̇   )

 ̇     
 

   

 ̇     
    3.91 

and the total system energy equation becomes, 

    
        

 
 

   

 ̇     
      3.92 

Finally, four stages are developed to complete the energy analysis of the notched 

blade energy generation system, which includes the above results and the 
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mathematical model for the notched turbine-generator system developed previously in 

section 3.1.3.  

The first stage is the summary of the torque mathematical equations, the second 

stage creates a relationship equation between torque and volume flow rate. The third 

stage combines the torque equation with the total system energy equation to obtain the 

relationship between inlet-outlet pressures and the volume flow rate of the notched 

turbine-generator system. Finally, the fourth stage is presented in a graphic that shows 

the relationship between the volume flow rate through the system and the inlet and 

outlet pressure. 

 Stage 1: 

By use of the equation 3.70, nozzle velocity (  ),  

      
 

 
 

the equation of angular velocity ( ) which is the relationship between tangential 

velocity (  ) and the volume flow rate is found to be  

  
  

  
 

   

    
 

  

      
     3.93 

where    is the turbine nozzle transversal area, and   and   are constants from 

the notched turbine mathematical equation.  

 Stage 2:  

The total torque equation expressed as a function of the volume flow rate is then 

written as, 

         
     

 
 
    

   
    3.94 

 Stage 3:  
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By substituting the angular velocity and total torque in the total system energy 

equation, the equation can be written as, 

        

 
 

   

 ̇     
 

     

      
  ̇     

 
     

      
   

    3.95 

         
   

 ̇     
 

     

      
  ̇     

 
    

      
     3.96 

where the turbine nozzle transversal area,     (       )
 [  ] ,           

and           are constants, without an associated physical dimension, from 

the notched turbine mathematical equation.  

 Stage 4: 

 Solving for    , in terms of the volume flow rate  , establishes the dependence 

seen in Figure C2 below. 

         
   

 ̇     
 

    

      
  ̇     

 
    

      
     3.97 

        
    

      
           3.98 

If outlet pressure (    ) is assumed as 13.333 KPa, and the volume flow rate ( ) 

range is between 0 and 7.5 liters/min, then the inlet pressure (   ) will have the behavior 

shown in the next figure.  

Finally, if the notched blade turbine is connected to a closed-loop system 

transporting 5 l/min, the ratio of pressures will be 
  

  
 
          

         
         which in this 

case, represents a system pressure loss of around 10%. 
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Figure 3.16  Inlet pressure vs. volume flow rate. 
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CHAPTER 4:  ASSEMBLY, TESTING AND ANALYSIS OF RESULTS 
 

This chapter is centered on the testing and analysis of results of three prototypes 

of the miniaturized power generation system. The prototypes presented in this chapter 

show the innovations and the most significant changes to the initial idea, with which the 

author began this dissertation work, which produced the final prototype as a new and 

patentable product. In the time line of this dissertation, six different models were 

assembled, but only three models were completely tested. In appendix A, all prototyped 

models are shown. This chapter is dedicated to explaining, comparing, and analyzing 

the differences between the models, through theoretical calculations, simulations and 

prototype testing. 

The first section of this chapter is dedicated to the process of integration and 

assembly of three prototypes; the second section covers the lab results of these 

prototypes; and the final section of this chapter is a comparative analysis of the test 

results of the prototypes. Also, the final section shows the theoretical calculation results 

and simulations of the notched blade turbine-generator design and compares these 

results with the experimental data of the prototype. 

4.1 Assembly of Prototypes  

The building of the complete system was developed in three steps, which 

involved the integration between turbine parts and permanent magnet machine parts, to 

conclude with the assembling and encasing of the miniaturized notched energy 

generator system. To know the functionality of the assembled prototype and to develop 
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the final tests, the turbine inlet system was connected to a domestic water system. The 

measurements of volume flow rate were taken on the turbine inlet, through a volume 

flow rate digital meter, connected in series with the water system and a gradual flow 

controller. The miniaturized notched blade energy generation system connected to the 

domestic water system is shown in Figure 4.1a, and the connections, and meters used 

in the testing processes, are shown in Figure 4.1a and 4.1b. 

 

Figure 4.1  Miniaturized notched energy generator system connected to the water 
system. 
 
 

As is shown in Figure 4.1, the measurements of induced voltage were done on 

the terminals of the 3-phase system through a voltmeter and an oscilloscope connected 

in parallel with the motor-generator terminals. The assembled prototypes are shown in 

Figures 4.2a, 4.2b, and 4.2c, and the test results of the three prototypes are presented 

in the next section.  
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4.1.1 Turbine 

The three prototype models shown in Figure 4.2 are the last versions and 

summarize the final stage of this dissertation. The prototype parts of these three models 

are shown in Figures 4.3, 4.4 and 4.5. The model in Figure 4.3 and 4.4 have the same 

casing shape, but do not have all design innovations and size of the final tested model 

shown in Figure 4.5. A comparative analysis of shapes, sizes, and curvatures is 

presented in Table 4.1. 

 

Figure 4.2  Prototype models assembled and tested: (a) not notched model, size 3.175, 
and 2.5-inch HDD motor; (b) not notched model, size 4, and 3.5-inch HDD motor; (c) 
notched model, size 3.175, and 2.5-inch HDD motor. 

 

Table 4.1  Comparative analysis of three prototypes. 

Prototype 
Model 

Shape Size Geometry and curvature Additional Characteristics 

Not notched 
model 

(Figure 4.3) 
8 blades 

3.175X  
2.5-inch 

HDD motor 

90 degree between inlet 
and outlet, innovative 
casing design 

Impulse turbine characteristics, 
rotor spin is require to free flow 

Not notched 
model 

(Figure 4.4) 
6 blades 

4X 
3.5-inch 

HDD motor 

90 degree between inlet 
and outlet, innovative 
casing design 

Impulse turbine characteristics, 
rotor spin is require to free flow 

Notched 
model 

(Figure 4.5) 

6 notched 
blades 

3.175 
2.5-inch 

HDD motor 

100 degree between inlet 
and outlet, innovative 
casing design 

Impulse and reaction turbine 
characteristics, cross-flow 
design, free flow 

 

The casing shapes, of the three prototyped models are similar in geometry and 

distribution and only the angle of inclination of the nozzle is different. In all turbine 

models, the casing sections were designed to enclose the rotor and the HDD motor-
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generator, for operation in micro-fluidic systems, but multiple simulations and tests 

resulted in the development of a new rotor model, this improving flow circulation through 

the new model rotor using the notched blades, without dramatically reducing the 

impulse effect on the first blade. 

 

Figure 4.3  Not-notched model, scale 3.175X, 2.5 inch HDD motor. 
 

 

Figure 4.4  Not-notched model, scale 4X, 3.5 inch HDD motor. 
 

The first two generation of prototypes were printed in the Virtual Manufacturing 

and Design Laboratory for Medical Devices (VirtualMDLab) at USF, by members of Dr. 

Lai-Yuen‘s team, and the last two generations were printed by USF‘s Engineering 

Technical Support Services (ENG TSS). Most of the prototypes developed through this 
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dissertation work were made using a 3D prototyping printer which uses Acrylonitrile 

Butadiene Styrene (ABS) plastic to build parts (Dimension sst-768), while only two sets 

were made using a different 3D prototyping printer which uses a proprietary powder and 

binder system to build the parts (3D Systems' ZPrinter-450). 

 

 

Figure 4.5  Notched model, scale 3.175X, 2.5 inch HDD motor. 
 

The notched turbine in Figure 4.5 includes all innovations. The turbine casing has 

an angle of 100 degrees between the inlet and outlet sections, this inclination results in 

the fluid being directed more towards the distal end of each blade, which has greater 

surface area since the notch is located on the internal, proximal edge. The notched 

turbine in Figure 4.5 has casing innovations, the first is a nozzle inclination of 10 

degrees with respect to the radial and tangential axes. The behavior simulations of the 

fluid through the turbine are shown in Figure 4.16. Also, we show the contribution of the 

nozzle inclination, as the discharge of the fluid through the notch, in addition to reducing 

the vortices between blades and on the central area of the rotor. 
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4.1.2 Motor Magnet Generator 

There are different models of electromagnetic systems, which could be used as 

electromagnetic generators, but after an extensive cost benefit analysis, it was decided 

to use the shape and configuration of coils and permanent magnets used in typical hard 

disk drive (HDD) motors.  These motors generally consist of a ring of permanent 

magnets and a winding in 9 slots, which interact to create a three-phase electric power 

system. Figures 4.6a and 4.6b show the shapes of coils and PMs used in this 

dissertation and show the exact place on the rotor and casing where they must be 

assembled to ensure their proper operation and functionality as a generator. 

 
Figure 4.6  Hard drive disk motors (HDD motors). 

 

In the assembly process of the last three prototypes 4 HDD motors were used, 

two of them from 3.5 inch HDD motors (3.5 inch is the physical dimensions of the drive), 

Figure 4.6a, and two from 2.5 inch HDD motors (2.5 inch is the physical dimensions of 

the drive), Figure 4.6b. These kinds of motors have the same shapes, but the sizes of 

all elements involved in the models are different, hence the magnetic induction 
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response is different. As was defined in Chapter 3, section 2, the induced voltage (emf) 

will be determined by the number of PMs, the surface area of each PM, the intensity 

and density of the magnetic field, and the rotation speed of the magnets around the 

coils. 

 In the miniaturized generator of Figures 4.3, 4.4, and 4.5, the electrical energy is 

generated by the rotation of the magnetic field from a ring of permanent magnets 

crossing the coils, as explained by Faraday‘s law [1–3]. A circular distribution of 

magnets in alternating polarity, which are attached to the notched turbine rotor, are the 

magnetic field source. Figure 4.7a shows the rotor and the ring of permanent magnets 

already assembled. Additionally, Figure 4.7b shows how the winding structure is 

assembled into the turbine casing and centered on the rotor axis, but it is aligned 

radially with the magnetic field created by the ring of permanent magnets. Figure 4.7b 

also shows how the coils attach to the turbine casing cap. The coils and permanent 

magnets shown in Figure 4.7 were extracted from a small hard disk drive (HDD) motor, 

and were adapted to accommodate for parts required for this specific prototype. 

Table 4.2  Turbine and permanent magnets dimensions and configuration. 

Turbine Permanent Magnet Machine (PMM) 

Parameters Dimensions Units Parameters Dimensions Units 

   10 degree    12  

   30.01 degree       ( ) 9  

   50.35 degree   1    

   9.6 degree     2.6    

   3.95 mm    16.34    

   3.1      60       

   3.5       1       

   0.65        1.361 E-6    

   4       1000-8000     

   1.327 E-6    Electrical Power 70-700    
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Figure 4.7  Ring of permanent magnets and coils assembled and bonded, on rotor and 
the turbine casing cap. 
 

4.1.3 Energy Generation System  

The novel design presented in this dissertation is supported by the CAD designs 

and the mathematical model developed in Chapter 3. The original size of the system 

was defined according to the requirement of small millimeter-sized applications, where 

the system could be integrated and used to support the operation of a larger system, 

such as a physiological system.   

The geometries of the notched blade energy generation system were presented 

in Chapters 2 and 3, and the dimensions and configurations of the original model are 

shown in Table 4.1.  

The notched blade generator is assembled in three steps: in the first step the 

rings of PMs are inserted and attached to the top and bottom of the rotor, the second 

step is the integration and union of coils in the turbine casing, and the third step is the 
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alignment, enclosing and sealing of all parts. Figure 4.7a and 4.9b show how the rotor 

and the ring of PM‘s magnets are assembled, while Figures 4.7b and 4.9a show how 

the coils and casing are joined together.  

 

Figure 4.8  Components of the notched blade energy generation system. 

 

 
Figure 4.9  Final prototype assembled in separated parts. 
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Figure 4.8 shows all components of the final prototype before being assembled, 

and Figure 4.10 shows the notched blade generator, assembled and ready to be 

connected to a larger system in a particular application. 

 

Figure 4.10  Notched blade generator assembled. 

4.2 Energy Generation System Testing Results 

As mentioned before, six different prototypes were built, but in this manuscript 

only the last three were taken into consideration. The three selected models have been 

simulated by using ANSYS Workbench V. 13.0, and the associated software to include 

geometry, mesh, pre-processing and post-processing. The simulation processes used 

the same solver control, output control, and data expressions, to maintain the same 

reference point for the analysis. The velocity and pressure behavior of the three models 

are shown in Figures 4.12, 4.13, and 4.14. 
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Figure 4.11  Characterization of a HDD motor used as PM-generator. 

Figure 4.11 shows the characterization data and linearization of a small HDD 

motor used as PM-generator. The data of Figure 4.11 was collected at USF‘s AMBIR 

lab and is used in this dissertation to find the relationships between the voltage and 

angular velocity, and between the volume flow rate and angular velocity, when the HDD 

motor is assembled into the turbines and used as a motor-generator machine. 

The characteristics of the three models are summarized in Table 4.2; and the 

testing results are shown in Table 4.3. The data points of voltage and volume flow rate 

in Table 4.3 were taken using the Extech 430 (part number EX430) True RMS 

Autoranging Multimeter and the OMEGA Digital Paddlewheel Meter FP2001-RE 

respectively. The volume flow meter was connected between the domestic water 

system and the turbine inlet to measure how many gallons per minute were entering the 

Turbine-generator system, and to use this meter as a flow regulator. The volume flow 

rate measured was between 0 and 4 gallons per minute. The maximum Q of the turbine 

was sufficient to move the motor/generator in a safe range of revolutions per minute, 
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without causing any damage to the internal structure of the generator‘s motor. The HDD 

motors used and assembled into the prototypes were designed to work at angular 

velocity of 5400 RPM [108]–[111]. 

4.3  Analysis of Results 

 

The data analysis of three prototypes is presented in this section, to validate the 

miniaturized notched blade energy generation system, as an efficient and novel system, 

which converts mechanical energy to electricity. Traditional impulse turbines are not 

included in this analysis because the miniaturized system developed in this dissertation 

fulfills a different function compared to the impulse and reaction systems found and 

reported in the literature, such as was reported in Chapter 1. 

The internal behavior of the turbines, when a fluid flows through the system, is 

shown in Figure 4.12, 4.13 and 4.14. These simulations shown the internal differences 

between the three turbine models and confirm the adaptability problems intern with the 

old models, when operating in a closed circulatory system. In contrast to the old models, 

Figures 4.12 and 4.13, the notched blade turbine system, Figure 4.14, shows several 

innovations, but the main novelty is the inclusion of a notch on each blade. As shown in 

Figure 4.14, the notches in the internal central edge of each blade, allows for 

continuous circulation of liquid inside of the rotor-chamber, and assures more 

interaction between fluid and the blades. In the new turbine, the fluid strikes the first 

blade and the notch redirects the fluid, to impact more than one blade. 
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Table 4.3  Volume flow rate vs. voltage produced by the turbine-generator machines. 
Lab testing results of three prototype models. 

Prototype 1, Not notched 
3.175X, 2.5-inch HDD motor  

Prototype 2, Not notched  
4X, 2.5-inch HDD motor 

Prototype 3, Notched 
3.175X, 2.5-inch HDD motor 

Volume Flow Rate 
Q (Gallons/Minute) 

Voltage 
(V) 

Volume Flow Rate 
Q (Gallons/Minute) 

Voltage 
(V) 

Volume Flow Rate 
Q (Gallons/Minute) 

Voltage 
(V) 

0.92 0.07 0.52 0.044 0.63 0.142 

1.1 0.168 0.62 0.092 0.71 0.173 

1.14 0.19 0.68 0.12 0.81 0.205 

1.2 0.22 0.72 0.141 0.9 0.26 

1.21 0.232 0.82 0.184 1.02 0.32 

1.34 0.271 0.9 0.19 1.11 0.362 

1.42 0.3 1 0.276 1.21 0.421 

1.48 0.323 1.1 0.322 1.31 0.471 

1.5 0.334 1.2 0.371 1.4 0.51 

1.55 0.34 1.3 0.409 1.51 0.56 

1.62 0.372 1.4 0.452 1.61 0.6 

1.7 0.401 1.51 0.47 1.71 0.64 

1.78 0.435 1.6 0.535 1.8 0.666 

1.8 0.45 1.71 0.58 1.85 0.684 

1.83 0.44 1.8 0.6 1.9 0.7 

1.92 0.47 1.83 0.615 1.95 0.737 

2 0.518 1.91 0.635 2 0.76 

2.3 0.62 2 0.684 2.11 0.794 

2.4 0.625 2.1 0.716 2.2 0.83 

2.5 0.684 2.23 0.79 2.3 0.87 

2.66 0.706 2.3 0.807 2.4 0.91 

2.75 0.738 2.4 0.86 2.5 0.95 

2.8 0.76 2.5 0.905 2.6 0.985 

2.9 0.81 2.71 0.98 2.71 1.025 

3 0.83 2.8 1 2.8 1.05 

3.2 0.875 2.91 1.043 2.9 1.06 

3.46 0.943 3.02 1.09 3 1.13 

3.79 1.04 3.08 1.11 3.12 1.16 

  3.13 1.14 3.2 1.185 

  
3.29 1.19 3.25 1.195 

  
3.3 1.195 3.3 1.125 

  
3.35 1.21 3.47 1.26 

  
3.43 1.24 
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Figure 4.12  Not-notched model turbine simulations scale 3.175X. The left side - velocity 
behavior, and right side - internal pressure. Maximum and minimum values of velocity 
and pressure are defined in both simulations as red and blue respectively. 
 

 

Figure 4.13  Not-notched model turbine simulations scale 4X. The left side shows the 
velocity behavior, and the internal pressure is shown in the right side. Maximum and 
minimum values of velocity and pressure are defined in both simulations as red and 
blue respectively.  
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Figure 4.14  Notched model turbine simulations scale 3.175X. The left side shows the 
velocity behavior, and the internal pressure is shown in the right side. Maximum and 
minimum values of velocity and pressure are defined in both simulations as red and 
blue respectively. 
 

The simulations in Figure 4.12, 4.13, and 4.14, show the impulse jet behavior on 

the first blade in the three prototyped models. Only in the notched system is most of the 

fluid directed clockwise, resulting in more than one blade being impacted and 

contributing to an increased rotor spin. The simulations of the notched turbine in Figure 

4.14 show more interaction between the fluid and the blades than that of the simulations 

of the old turbine models where the blades were not notched. Figures 4.12 and 4.13 

show the fluid impacting the first non-notched blade, producing only a single force 

impulse on the rotor, while the notched blade model, Figure 4.14, has a direct jet impact 

on the first blade, and an indirect impact on second and third blades. While this benefit 

is due to the notches in the blades, the blade curvature and casing shape also aid in the 

directed flow. 
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Figure 4.15  Turbine simulations time response parallel 1: systems behavior using 
volume flow rate Q=2.5 gallons per minute. (a) 3.175X Not-notched model; (b) 3.175X 
notched turbine model. 
 

 
Figure 4.16  Turbine simulations time response parallel 2: systems behavior using 
volume flow rate Q=2.5 gallons per minute. (a) 4X Not-notched model; (b) 3.175X 
notched turbine model. 

 

Other differences between models are in the transient response, which is 

immediate in the notched turbine, Figures 4.15b and 4.16b. Also, flow circulation 
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problems were detected in the old turbines because when the flow was interrupted, the 

turbine inlet pressure and the pressure in the first blade increased dramatically, causing 

vortices inside of the rotor blades, which could reduce the lifetime of the turbine system. 

For organization purposes and to ease of comprehensions, the testing results of 

Voltage (V) vs. Volume Flow Rate (Q) and Voltage (V) vs. Angular Velocity ( ) of the 

three prototypes are drawn in the same graphics and are shown in Figures 4.17, and 

4.18. 

 

Figure 4.17  Volume flow rate (Q) vs. voltage, experimental results. 

The analysis of the experimental data shown in Figures 4.17 and 4.18 validates 

the innovations developed on the final prototype. Using the same volume flow rate of 

the three models, an increase in voltage can be seen in the final prototype (notched 

model) when compared to the models without the notch. Also, to spin the rotor in the 

three prototypes, a higher volume flow rate is needed to spin the un-notched models, 

than in the notched model. Figure 4.17 shows the testing results and the relationship V 

vs. Q in the three models, and Figure 4.18 shows the relationship Q vs. ω in the three 

models. In summary, the simulation results, Figures 4.12 through 4.16, and the 
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experimental data shown in Table 4.3 and Figures 4.11, 4.17, and 4.18, validate the 

new notched blade energy generation system. These results show the benefits of the 

prototype, and its capability to produce electricity using water flow. Also, these analyses 

support the conclusion that the notched system is more efficient than previous models, 

developed in this dissertation process, and satisfies the minimal efficiency general 

standard of impulse turbines which reach an average of 70% efficiency. 

 

 

Figure 4.18  Volume flow rate (Q)  vs. angular velocity (ω) , experimental results. 
 

 
Figure 4.19  Voltage (v) vs. angular velocity (ω), experimental results. 
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The three prototypes tested could be used as energy generation systems, but 

only the final model, which is a cross-flow turbine energy generation system, can be 

used in closed fluid systems of constant flow. The notched blades prototype shown in 

Figures 4.5 and 4.10 has functionality aspects of impulse and reaction turbines. 

Therefore, in this specific case the curvature design of the blades guarantees that the 

jet stream from the nozzle is impacting the first blade on the given surface while it also 

guarantees that the pressure produced internally will further contribute to the spin of the 

rotor, increasing efficiency and the resulting power.  

Figure 4.19 was developed to understand the difference between the theoretical 

calculations and the experimental data. The mathematical model developed in Chapter 

3 was used to find the relationship between volume flow rate and the ideal voltage 

which must be produced by the notched blade energy generation system. The 

parameters of a 3.175X size model were used and the final relationship is shown in red 

on Figure 4.19. The experimental data of the notched blade energy generation 

prototype was used to complete Figure 4.19 and drawn in blue on this figure.  

Under ideal conditions, the experimental (blue) and theoretical (red) results of 

Figure 4.19 should be close to being equal.  The mathematical relationship of 

experimental to theoretical (blue line)/(red line) produces a result of 53%. This result 

has multiple causes, which are listed as follows: 

a. The theoretical calculations were developed using a perfect model which didn‘t 

include the losses by structure, frictions, material, viscosity, and gravity. 

b. The materials used to develop the prototypes, and the limitations of the 3D 

printer machines at USF labs created assembly problems. 
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c. The prototype quality was impacted by structural problems in the casing walls, 

and many tiny holes increased wall porosity and changed the internal behavior of 

the system. 

d. The relationship between the inlet and outlet volume flow rate was affected by 

the porosity of the material, which became a considerable factor that adversely 

affected the efficiency of the system. 

e. The materials, facilities and tools used presented limitations, but were sufficient 

to show proof of concept. 

f. And finally, the HDD motors used as motor-generators which added friction, 

weight, forces and torques were not taken into account in the theoretical model 

resulting in an efficiency of 53% when compared with the experimental results.  

The above analysis concluded this Chapter, and leads to the conclusions and 

future work. 
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CHAPTER 5:  CONCLUSIONS AND FUTURE WORK 
 

5.1 Summary and Contributions to the Field of Electrical Engineering  

The overall research objective of this dissertation work was to investigate a novel 

miniaturized electrical generator system. Depending on the volume flow rate and the 

application power requirements, where the notched blade turbine energy generation 

system is to be installed, a single or a double motor frame (coils and permanent 

magnets) could be assembled on the same turbine. The double motor frame design 

increases the energy transformed. Also, the double combination of coils and permanent 

magnets could account for a more efficient system. 

The preferred embodiment contains a cross-flow turbine design which can be 

installed and used in different orientations and positions; in contrast to the more 

standard turbine designs and energy generating systems, which only work in one 

position, and have limited orientations. The design has three novel and critical 

components:  

a. The notched blade turbine rotor which was especially designed to be used in an 

immersed environment and minimized turbulence between blades and any 

opposing impulse forces. 

b. A turbine casing designed to increase the jet impact and permit circulation inside 

of the turbine. 

c. The third innovation is the adaptation and assembly of a brushless machine 

model, designed to provide the mechanism by which the system will convert 
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mechanical energy to electricity. The permanent magnet (PM) machine 

configuration (brushless machine) was inspired by the principles of operation and 

architecture of a micro hard drive disk motor. 

Thus, this novel hybrid action-reaction turbine with notched blades and casing 

architecture designs has broadened the engineering contribution of my work well 

beyond the power and bio-medical fields. The system has potential uses not only in 

medical equipment, but in automotive applications, home appliances, and aquatic and 

ventilation systems. In addition, with small design modifications and utilization of 

biocompatible materials, this notched blade energy generation system can be used for 

in vivo systems and many other applications.  

As this work has progressed and milestones were accomplished, the innovative 

design of my investigation has been submitted to undergo a patent process through the 

USF Patent Office. 

In summary, the final result of this research is a miniaturized system capable of 

producing electrical energy by the use of a novel notched blade turbine. The turbine has 

an attached magnetic system that induces electric current in coils when a fluid rotates 

the turbine rotor. The shape and geometries of the notched blade energy generator 

system can be scaled to meet the power demands for several different applications 

such as home appliances, military devices, and bio-compatible devices in need of 

energy recharging. 



www.manaraa.com

93 
 

5.2 Recommendation for Future Work and Emerging Projects  

For any future work to be successful it is imperative to develop real size 

prototypes, using rigid, resistant and durable materials. It is also important that the 

prototypes be coated with a bio-compatible material that allows for in-vivo uses. 

To improve the mathematical model equations developed in chapter 3, it is 

necessary to conduct a study of the interaction between the PMs and the stator coil 

slots. The analysis of the magnetic field and the effects produced by electromagnetic 

forces must be developed in a similar way as it is presented by Li Jiangtao in [104][100]. 

To complement the notched blade energy generation system and convert the 

system in a regulated power supply, a micro AC to DC converter could be designed and 

attached on the turbine casing. 

As an added benefit to the current research, a levitation system of the rotor is 

being developed. A permanent-magnet configuration in the casing and the rotor will 

create the rotor levitation effect. This special characteristic could minimize friction inside 

of the turbine, reducing pressure through the turbine, as well as contribute to increase 

the rotor spin and efficiency. 
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Appendix A  Retrospective of the Design Changes and Justifications 

Hydraulic turbines extract energy from the gravitational potential of fluids (water) 

sources, or from the kinetic energy of flowing liquids, or through of a combination of the 

two.  There are two broad categories of turbines, reaction and impulse turbines. The 

first one acts on a charge of pressure in the flow of the fluid to move the turbine. The 

reaction turbines require a design complex, because the efficiency depends of very high 

level of precision in the gap between the rotor and its casing. The second one, the 

impulse turbine, is a system moved by the impact of a fluid jet on the concave surface of 

the blades. The impulse turbines are easy to build and assemble. In this dissertation, 

impulse and reaction effects are combined to form a kind of impulse-reaction turbine. 

This turbine combines the  impulse  of  the  flow, from nozzle,  striking  the turbine  

blades, and the  reactive  force  produced on  the blades in rotation, when  the fluid 

through the rotor chamber, changes the direction. 

The requirements stated in this project demand a combination of characteristics 

of impulse and reaction turbine, extracting of the impulse turbine, the simple 

construction and the jet impacting over blades, and from the reaction turbine, the 

precision and the use of pressure to move the rotor. 

A.1 Turbine System Designs  

An impulse Michell Banki turbine was the original model proposed to develop this 

project, but simulations, lab tests and theoretical analysis shown that this specific kind 

of turbines do not work on applications where is required complete conditions of 

immersion.   An impulse turbine uses the absolute velocity at inlet (jet velocity) from 

nozzle to move the rotor by the change in the kinetic energy. Also, the rotor of a Pelton 



www.manaraa.com

105 
 

and others impulse turbines work at atmospheric pressure (the rotor chamber is at 

atmospheric pressure), and without immersed rotor. In general an impulse turbine such 

as the reported and the commercial models don‘t have the shape characteristics, to be 

used in close flow systems, where the energy conversion demands a full rotor 

immersion. Also, these kinds of turbines need to be fixed in a place, and only works in a 

specific position and orientation. On the other hand, a reaction turbine has fixed blades 

and moving blades, and the energy is generated by the pressure inside the rotor 

chamber, which must kept full of fluid at all times.  

Four generations of designs to realize a notched blade energy generator were 

developed. The First Generation   approach using simple Banki turbine with traditional 

blade (non-notched) rotor, cylindrical magnets with axial orientation, and coils; The 

Second Generation   approach using simple Pelton turbine with traditional curved 

blade (air) and external notched blade (water) rotor, ring magnets, and winding coils;  

Third Generation   approach using novel internal notched blade rotor, ring magnets, 

and winding coils; Fourth Generation   approach using novel internal notched blade 

rotor, ring magnets, winding coils, and casing innovations. The design of the four 

generation of turbine was presented in Chapter 3 and analyzed in Chapter 4. The keys 

findings in the first generation, 

a. Inlet pressure too high to spin rotor at adequate speed to produce energy (low 

velocity)  

b. Casing inlet too large 

c. Design not efficient enough to generate high rotor spin for energy generation 

The approach findings in the first generation are listed as follow,  
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d. Alter casing and blades in second generation 

 

Figure A.1  Turbines first generation. 

The key findings in the second turbine generation, 

a. Casing inlet nozzle was adequately designed to create high inlet velocity 

b. External notched blade did not provide jet stream continuity for rotor impact to 

create high angular velocity 

The approach findings in the second generation,  

c. To increase rotor speed and create cross flow conditions (continuous flow) in 

third generation. 
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Figure A.2 Turbines second generation. 

The key findings in the third turbine generation, 

a. An internal notched blade vs. an external notched blade creates cross flow 

characteristics  

b. This generation created vortices between blades 

c. Applied fluid  

The approach findings in the third generation,  

d. To reduce vortices, increase system efficiency, and create favorable impulse-

reaction conditions for power generation in fourth generation (final design). 

The first models used in the development of this dissertation works are shown in 

Figure A.1. Rotors, holders, and coils designs are shown in Figures A.2, A.3, and A.4, 

while different models of permanent magnets, shown in Figure A.5, were part of the 

simulation and analysis. Also, previous models design were simulated and analyzed in 

transient state, most of them having a good performance when air or fluid were used, 

but when the steady state was included in the simulations, a reduction of rotor speed 

was the final result, with values close to zero and a poor mechanical power, insufficient 

to be converted to electrical energy, and to be used as power supply of electronic 

devices. 
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Figure A.3  Turbines third generation. 

In the case of systems using air to move the turbine system, the results were 

different, and those depended of the rotor shape and the area impacted by the jet. In 

those cases, the efficiency in the cross flow rotor designs is reduced, while uniform and 

curved blades with proximity of nano meter to the walls holder, produced a good 

response and power efficiency, keeping the rotation and the induction of energy in the 

system.  
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Figure A.4  Initial coils model designs. 

 

Previous permanent magnets and coils configurations used, analyzed and 

simulated are shown in Figures A.4, A.5, and A.6. 

 

Figure A.5  The previous coils designs and permanent magnets designs. 
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Appendix B  Copyright Permissions 

B.1  Permission for Use of Figure 1.1 
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B.2  Permission for Use of Figure 1.2 
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B.3  Permission for Use of Figure 1.3 
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B.4  Permission for Use of Figure 1.6 
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B.5  Permission for Use of Figure 1.7 
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B.6  Permission for Use of Figure 1.8 
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B.7  Permission for Use of Figures 1.9a and 1.9b 
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B.8  Permission for Use of Figure 1.9c 
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